July 2001 Revised April 2003

NC7NZU04 TinyLogic® UHS Unbuffered Inverter

FAIRCHILD

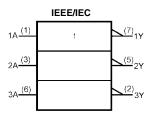
SEMICONDUCTOR®

NC7NZU04 TinyLogic® UHS Unbuffered Inverter

General Description

The NC7NZU04 is a triple unbuffered inverter from Fairchild's Ultra High Speed Series of TinyLogic®. The special purpose unbuffered circuit design is primarily intended for crystal oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range.

Features


- Space saving US8 surface mount package
- MicroPak[™] leadless package
- Unbuffered for crystal oscillator and analog applications
- \blacksquare Balanced Output Drive; ± 8 mA at 4.5V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Low Quiescent Power;
 - $I_{CC} < 1~\mu\text{A},~V_{CC} = 5.5V,~T_{A} = 25^{\circ}C$

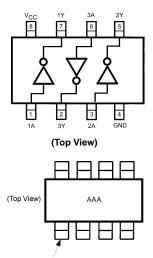
Ordering Code:

		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
NC7NZU04K8X	MAB08A	7NZU4	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7NZU04L8X (Preliminary)	MAC08A	U6	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

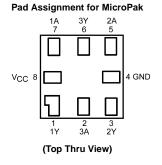
Logic Symbol

Pin Descriptions


Pin Names	Description
A	Input
Y	Output

Function Table

Y	$=\overline{\mathbf{A}}$
Input	Output
Α	Y
L	Н
Н	L


H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin One

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
@ $V_{IN} > V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 0.5V$, $V_{CC} = GND$	+50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	–65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating

Thermal Resistance (θ_{JA})

Conditions (Note 2)							
Supply Voltage Operating (V_{CC})	1.65V to 5.5V						
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V						
Input Voltage (V _{IN})	0V to 5.5V						
Output Voltage (V _{OUT})	0V to V_{CC}						
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$						

250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^\circ C$ to $+85^\circ C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	1.65 to 2.7	0.85 V _{CC}			0.85 V _{CC}		V		
		3.0 to 5.5	0.8 V _{CC}			0.8 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.65 to 2.7			0.15 V _{CC}		0.15 V _{CC}	V		
		3.0 to 5.5			0.2 V _{CC}		$0.2 V_{CC}$	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.1	2.3		2.1			V – V	I _{OH} = −100 μA
		3.0	2.7	3.0		2.7			VIN - VIL	10H = -100 μA
		4.5	4.0	4.4		4.0				
		1.65	1.29	1.52		1.29		V		$I_{OH} = -2 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -2 \text{ mA}$
		3.0	2.4	2.75		2.4			V _{IN} = GND	$I_{OH} = -4 \text{ mA}$
		3.0	2.3	2.61		2.3			$v_{IN} = GND$	$I_{OH} = -6 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.2		0.2			
		2.3		0.0	0.2		0.2		V – V	I _{OL} = 100 μA
		3.0		0.0	0.3		0.3		VIN - VIH	ι _{OL} = 100 μΑ
		4.5		0.0	0.5		0.5			
		1.65		0.08	0.24		0.24	V		$I_{OL} = 2 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 2 \text{ mA}$
		3.0		0.17	0.4		0.4		$V_{IN} = V_{CC}$	$I_{OL} = 4 \text{ mA}$
		3.0		0.25	0.55		0.55		VIN = VCC	$I_{OL} = 6 \text{ mA}$
		4.5		0.26	0.55		0.55			$I_{OL} = 8 \text{ mA}$
IN	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V,	GND
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1		10	μA	V _{IN} = 5.5V,	GND
I _{CCPEAK}	Peak Supply Current in	1.8		1				mA	V _{OUT} = Ope	en
	Analog Operation	2.5		2					$V_{IN} = Adjus$	t for
		3.3		5					Peak I _{CC} C	urrent
		5.0		15						

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.05	1.0		8.5	1.0	9.0			
t _{PHL}		2.5 ± 0.2	0.8		6.2	0.8	6.5	ns	$C_L = 15 \text{ pF},$	Figures
		3.3 ± 0.3	0.5		4.5	0.5	4.8	RL	$R_L = 1 \ M\Omega$	1, 3
		5.0 ± 0.5	0.5		3.9	0.5	4.1			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.0		6.0	1.0	6.5	ns	$C_L = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8		5.0	0.8	5.5	115	$R_L=500\Omega$	1, 3
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		9				pF	(Note 3)	Figure 2
	Capacitance	5.0		11				PΓ	(14018-3)	r igule z

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{|N}) + (I_{CC}\text{static}).$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Unit
	i didifictor	Contantions	(V)	Typical	U
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

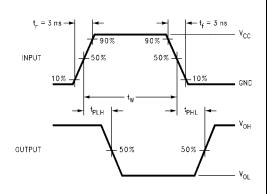
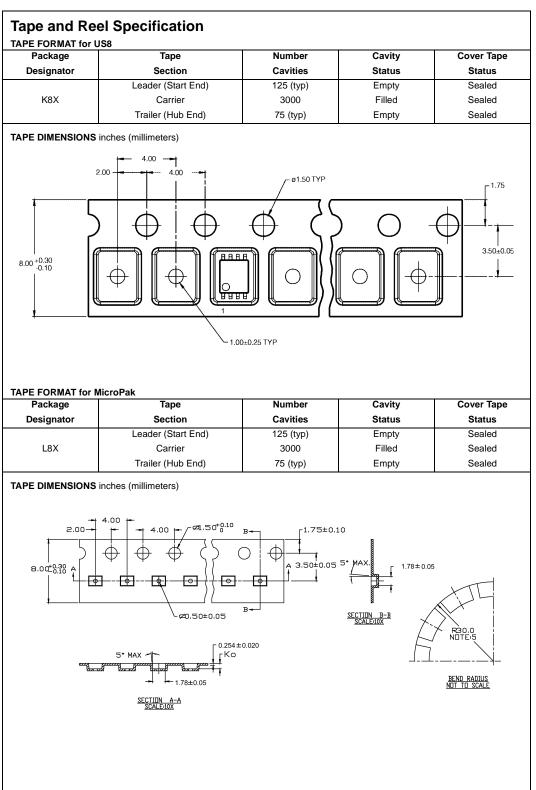
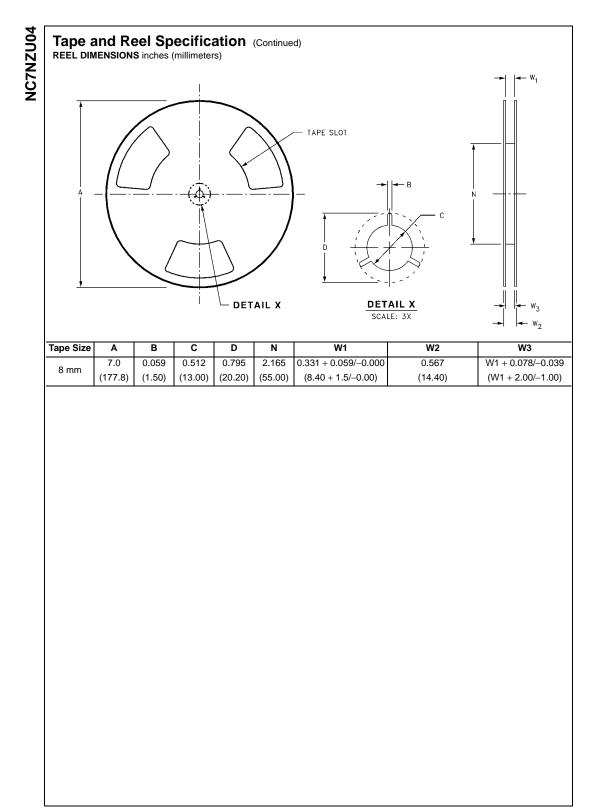
AC Loading and Waveforms

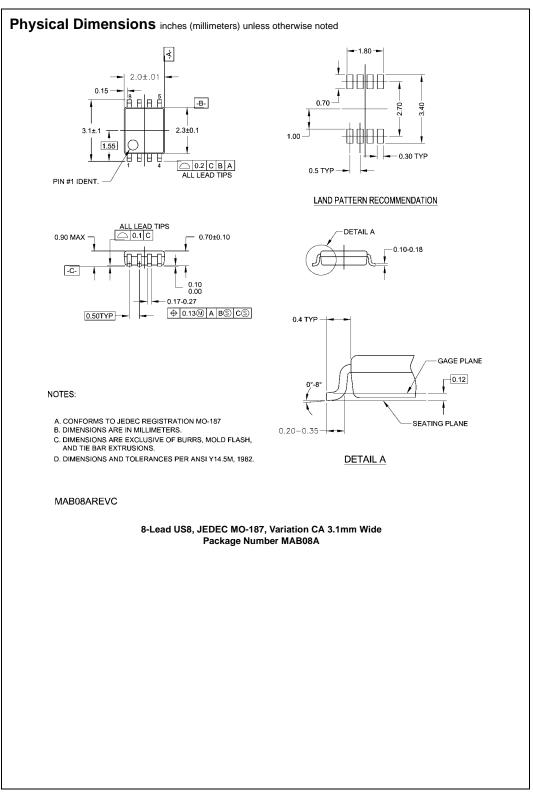
FIGURE 1. AC Test Circuit

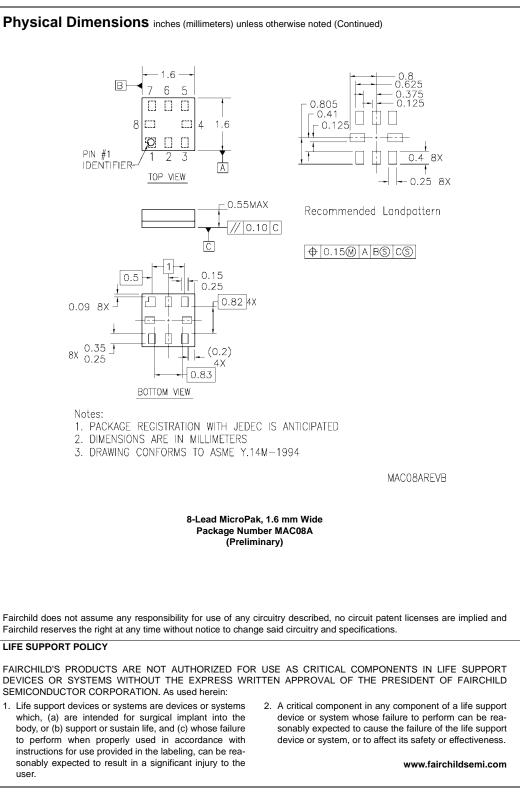
Application Note: When operating the NC7NZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I_{CCPEAK} specification in the DC Electrical Characteristics table.

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = variable; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms



www.fairchildsemi.com

6

